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E Kovács, F Kusmartsev and R T Giles

Loughborough University, Leicestershire LE11 3TU, UK

Received 23 May 2003
Published 20 August 2003
Online at stacks.iop.org/JPhysA/36/9391

Abstract
We investigated dynamical effects in a system of magnetic multilayers which
arise at different rates of change of the external field. Our studies have been
stimulated by recent experiments indicating nontrivial magnetic dynamics in
these systems.

To describe a system consisting of magnetic layers, we have used
conventional Bloch equations. A time-dependent external magnetic field has
been applied, but no dissipation effects have been taken into account. We have
studied the time development and instabilities of the regular behaviour of this
system numerically. We found local energy excitations (breathers) and chaotic
transients. The behaviour and the final configurations can strongly depend on
the initial conditions, and the strength of the external field at an earlier time.
We observed some sudden switching between two remarkably different states.
The series of bifurcations has been found.

PACS numbers: 05.45.Mt, 75.70.Cn

Magnetic multilayer systems are considered as one of the most promising devices with
many useful properties such as giant magnetoresistance, spin-wave transistors and spin-effect
amplifiers. Therefore, they have attracted considerable attention in recent years. These
magnetic layers can be produced from Fe, Co or Ni separated by non-magnetic dielectric or
metallic layers. They are built by modern growth techniques such as laser ablation or molecular
bean epitaxy (MBE). In several cases the exchange interaction between moments in one layer
is much stronger than between moments in different layer. In these cases all moments in one
particular layer have the same orientation. Therefore, the layer behaves like a single domain,
so we can treat the system as a one-dimensional spin-chain with magnetization vector M(n)

of the nth layer. We have taken into account anisotropy stronger than the magnetic interlayer-
interaction, because strong interactions destroy all stable configurations immediately. To
describe the system we used the following Hamiltonian (1):

E = −J

N∑
n=1

M(n)M(n+1) − b

2

N∑
n=1

(
M(n)

z

)2 −
N∑

n=1

M(n)H(n) (1)
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where J is the exchange-energy term, b is the anisotropy coefficient and H(n) is the external
field applied to the nth layer.

The phenomenon that nonlinearity and discreteness in lattices can lead to spatially
localized stable modes was discovered quite a few years ago. These modes were named
breathers and rotobreathers. There have been some intensive investigations of discrete
breathers [2], especially in spin lattices [3, 4]. However, there are still many open questions
about them, both theoretical and experimental. For example, we do not know much about how
to create and how to destroy them. In order to get more information about this, we studied the
time evolution of breathers and other kinds of localization in magnetic mono- and multilayers.

From the energy-formula above and using the Landau–Lifshitz equations

h(n)
eff = − dE

dM(n)
(2)

and
d

dt
M(n) = const M(n) × h(n)

eff (3)

we obtain the dynamical equations:
d

dt
M(n) = JM(n) × (M(n+1) + M(n−1)) + bM(n) × ez(M(n) ez) + M(n) × H(n). (4)

If we introduce a polar coordinate system, where M(i) = M(i)(cos φ(i) sin θ(i), sin φ(i) sin θ(i),

cos θ(i)), and consider the magnitude of the magnetic vectors constant (M(i) = M = 1), we
get the following differential-equation system:

dθ(n)

dt
= J [sin θ(n−1) sin(φ(n) − φ(n−1)) + sin θ(n+1) sin(φ(n) − φ(n+1))]

+ sin φ(n)H (n)
x − cos φ(n)H (n)

y

dφ(n)

dt
= J [cos θ(n)(sin θ(n−1) cos(φ(n) − φ(n−1))

+ sin θ(n+1) cos(φ(n) − φ(n+1)))/sin θ(n) − (cos θ(n−1) + cos θ(n+1))]
+ b cos(θ(n)) − H(n)

z +
(
sin φ(n)H (n)

y + cos φ(n)H (n)
x

)
cos θ(n)/sin θ(n)

(5)

where H(n)
x , H(n)

y and H(n)
z are the components of the applied external field, which is in the x−y

plane now
(
H(n)

z = 0
)
, moreover H(n)

x = −2 × H(n)
y , and the boundary conditions were open

(M(0) = 0, M(N+1) = 0). The hard-axis anisotropy was high (b = −100), therefore the main
energy term is −b

2

∑
n cos2(θ (n)), so we will concentrate on cos(θ (i)). We chose these values

of b and H
(n)
i to get stable breathers easily. We use the following indicator to study chaotic

transients: we change θ(i) by a small number (and denote it by θ̃ (i)), than calculate the
logarithm of the deviation of the modified θ(i) from the original value of θ(i) divided by the
initial deviation d(t) := ln

(∣∣ θ(i)(t)− θ̃ (i)(t)

θ (i)(0)− θ̃ (i)(0)

∣∣), than examine the first few values (i.e., at the first
few numerical timesteps) of this function. In order to understand the multilayer system, we
first study the behaviour of one layer, which is, however, nontrivial, then mention a few facts
about the multilayer case.

Consider a system consisting of one layer only (it means that we ignore the term with J ),
therefore the dynamical equations become

dθ

dt
= sin(φ)Hx − cos(φ)Hy

dφ

dt
= b cos(θ) + (sin(φ)Hy + cos(φ)Hx)cos(θ)/sin(θ).

(6)

If the external field is constant, the behaviour is totally regular, the Fourier spectra show only
one frequency.
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Figure 1. Different behaviour of y = cos(θ), H =
√

H 2
x + H 2

y + H 2
z is the absolute value of the

external field, H changes only between t1 and t2, here t1 = 100 and t2 = 200.

Table 1.

Hini,y cos(θ) if fast cos(θ) if normal cos(θ) if slow

50 0.999 4 −0.9931 0.9913
49 −0.985 89 −0.9790 −0.9923
45 −0.962 7 0.9892 0.9713
40 −0.964 4 −0.9737 0.9861
35 0.895 6 −0.9377 0.9409
20 0.790 3 0.7852 0.7808

Dependence of the final cos(θ ) on the initial field if the rate of change is fast (t2 − t1 = 100),
normal (t2 − t1 = 300) or slow (t2 − t1 = 1000) at the behaviour-type II.

If we reduce the field continuously to 0, we can observe different kinds of behaviour
(figure 1). (I) is quite typical behaviour, we can find similar in the case of a wide range of
initial conditions, but not for cases (II) and (III).

In case (II), the t = 0 angles θini = 1.522 314, φini = −0.357 3936 and after time t2 the
M vector is very close to the hard z-axis: cos(θfin) is 0.999 49. In table 1, the dependence of
the final cos(θ) on the initial field with different rates of change of the field can be seen.

In case (III), θini = −1.473 89, φini = −0.334 493 19.
So when there is no coupling and the field decreases to zero, the final cos(θ) is constant,

and the dependence of this constant on the initial angle of the magnetization vector is
quite interesting. The sign of cos(θ) can change very suddenly. According to it we
can divide the two-dimensional initial space (θ, φ) into two disjoint domains with sharp
boundaries, one domain results positive, the other negative cos(θfin). For example, if (θ, φ)
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(a) The external field (b) High energy in the middle layer

(c) Low energy in the middle layer
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Figure 2. Creating breathers by setting special initial conditions; cos(θ(2)) is the continuous line,
the third layer (large dots) is the same as the first one (small dots), the external field is uniform in
space.

is (0.541 823 × π/2, 0.2), cos(θfin) is about −0.7, and if (θ, φ) = (0.541 822 × π/2, 0.2),
cos(θfin) = 0.67.

Combining cases (II) and (III) we can create breathers (local excitations). Let us consider
a three-layer system (J �= 0) with the following initial conditions: the first and third layers
are the same as in case (III) and the middle layer is the same as in case (II) (figure 2(b)) or
vice versa (figure 2(c)).

There is another typical behaviour (figure 3).
If the final value of the external field Hfin is not 0 but less than the initial field was (for

example Hfin = 0.4 × Hini), the magnetization after H reaches Hfin will not be constant but
oscillate with smaller frequency, and if Hfin is even smaller (for example, Hfin = 0.2 × Hini),
also with a smaller amplitude. There is a critical point here, if Hfin = 0.360 417 8 × Hini, the
amplitude of cos(θ) drops, if Hfin = 0.360 418 × Hini, it does not drop (figure 4).

The local instability indicator can be positive when H reaches the critical point (figure 5)
where the time units are taken in numerical timesteps, time 0 was 399 above, on the vertical
axis the indicator introduced above.

When we tried to find the dependence critical field from the initial field, we found a
very unexpected phenomenon: Sometimes there is not only one critical field, but many, i.e.
changing the final field for a fixed initial field we can find regions with high- and low-amplitude
of the final cos(θ), alternately, and the boundaries between these regions are very sharp. For
example, if the initial conditions are θini = 1.5, φini = −1.3, t2 − t1 = 300, then the final
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(a) The external field
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Figure 3. Other typical behaviour of y = cos(θ), H is the absolute value of the external field and
changes only between t1 and t2; here t1 = 100 and t2 = 400, we can observe that at time about
t1 = 300 the amplitude of y suddenly drops.

(a) The external field (b) Different behaviour of y = cos( )
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Figure 4. Sharp boundary between two different kinds of behaviour, Hfin = 0.36 (continuous line)
and Hfin = 0.361 (dotted line), but the behaviour is remarkably different.
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Figure 5. The instability indicator seems to be positive, t = 0 at about the critical point.

amplitude will be about 1/2 for Hfin < 19.8866 but almost one for 19.8867 < Hfin < 20.4422,
less than 1/2 again for 20.4423 < Hfin < 21.4178 and almost one again for Hfin > 21.4179.
If we examine it in the case of a higher initial field, we can find more regions. In figure 6, one
little line means that if the initial field is the given Hi then if we reduce the field to a value a
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Figure 6. The short lines represent boundaries between remarkably different regions of the
dynamical behaviour of the single-layer magnitization at a given initial field Hini.
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Figure 7. Damping in the second layer—the continuous line is cos(θ(1)), the thick dotted is
cos(θ(2)) and the thin dotted is cos(θ(3)).
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little bit greater than the Hcrit coordinate of the line, the amplitude will be close to one but if
we decrease it slightly below Hcrit, the amplitude drops close to 1/2.

If the coupling is stronger, we can observe a different kind of localization (figure 7). In
this figure, we can see that the amplitude of cos(θ(2)) is much smaller than the amplitudes
of cos(θ(1)) and cos(θ (3)), and it is small for a very long time, so this damping is a stable
phenomenon although the coupling is not very small.

Summary

We studied magnetic layers with weak or zero coupling and huge anisotropy and applied a
changing inhomogeneous external field to them. We found that even the zero-coupling case is
highly nontrivial, there are some chaotic transients between different states, strong sensitivity
from the initial conditions and series of bifurcations.

If the coupling is nonzero but weak, we can produce almost arbitrary local energy
excitations (breathers) and other kinds of localization by inhomogeneity in the initial
magnetizations but not in the external field and in the anisotropy.
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